hopr_network_types/session/state.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
//! # `Session` protocol state machine
//!
//! The protocol always forms a middle layer between a *lower layer* transport (such as an unreliable
//! UDP-like network) and any upstream protocol.
//! The communication with the *lower layer* is done via [`SessionState`];
//! the *upper layer* is using the [`SessionSocket`] to pass data with the
//! `Session` protocol.
//!
//! ## Instantiation
//! The instantiation of the protocol state machine is done by creating the [`SessionSocket`]
//! object, by [providing it](SessionSocket::new) an underlying transport writer and its MTU `C`.
//! The protocol can be instantiated over any transport that implements [`AsyncWrite`] + [`AsyncRead`]
//! for sending and receiving raw data packets.
//!
//! ## Passing data between the protocol and the upper layer
//! The [`SessionSocket`] exposes as [`AsyncRead`] +
//! [`AsyncWrite`] and can be used to read and write arbitrary data
//! to the protocol. If the writer is [closed](AsyncWrite::poll_close), the session is closed
//! as well.
//!
//! ## Passing of data between the protocol and the lower layer
//!
//! As long as the underlying transport implements [`AsyncRead`] + [`AsyncWrite`],
//! the [`SessionSocket`] automatically polls data from the underlying transport,
//! and sends the data to the underlying transport as needed.
//!
//! ## Protocol features
//!
//! ### Data segmentation
//! Once data is written to the [`SessionSocket`], it is segmented and written
//! automatically to the underlying transport. Every writing to the `SessionSocket` corresponds to
//! a [`Frame`](crate::session::frame::Frame).
//!
//! ## Frame reassembly
//! The receiving side performs frame reassembly and sequencing of the frames.
//! Frames are never emitted to the upper layer transport out of order, but frames
//! can be skipped if they exceed the [`frame_expiration_age`](SessionConfig).
//!
//! ## Frame acknowledgement
//!
//! The recipient can acknowledge frames to the sender once all its segments have been received.
//! This is done with a [`FrameAcknowledgements`] message sent back
//! to the sender.
//!
//! ## Segment retransmission
//!
//! There are two means of segment retransmission:
//!
//! ### Recipient requested retransmission
//! This is useful in situations when the recipient has received only some segments of a frame.
//! At this point, the recipient knows which segments are missing in a frame and can initiate
//! [`SegmentRequest`] sent back to the sender.
//! This method is more targeted, as it requests only those segments of a frame that are needed.
//! Once the sender receives the segment request, it will retransmit the segments in question
//! over to the receiver.
//! The recipient can make repeating requests on retransmission, based on the network reliability.
//! However, retransmission requests decay with an exponential backoff given by `backoff_base`
//! and `rto_base_receiver` timeout in [`SessionConfig`] up
//! until the `frame_expiration_age`.
//!
//!
//! ### Sender initiated retransmission
//! The frame sender can also automatically retransmit entire frames (= all their segments)
//! to the recipient. This happens if the sender (within a time period) did not receive the
//! frame acknowledgement *and* the recipient also did not request retransmission of any segment in
//! that frame.
//! This is useful in situations when the recipient did not receive any segment of a frame. Once
//! the recipient receives at least one segment of a frame, the recipient requested retransmission
//! is the preferred way.
//!
//! The sender can make repeating frame retransmissions, based on the network reliability.
//! However, retransmissions decay with an exponential backoff given by `backoff_base`
//! and `rto_base_sender` timeout in [`SessionConfig`] up until
//! the `frame_expiration_age`.
//! The retransmissions of a frame by the sender stop if the frame has been acknowledged by the
//! recipient *or* the recipient started requesting segment retransmission.
//!
//! ### Retransmission timing
//! Both retransmission methods will work up until `frame_expiration_age`. Since the
//! recipient-request-based method is more targeted, at least one should be allowed to happen
//! before the sender-initiated retransmission kicks in. Therefore, it is recommended to set
//! the `rto_base_sender` at least twice the `rto_base_receiver`.
//!
//! The above protocol features can be enabled by setting [SessionFeature] options in the configuration
//! during [SessionSocket] construction.
//!
//! **For diagrams of individual retransmission situations, see the docs on the [`SessionSocket`] object.**
use crossbeam_queue::ArrayQueue;
use crossbeam_skiplist::SkipMap;
use dashmap::mapref::entry::Entry;
use dashmap::DashMap;
use futures::channel::mpsc::UnboundedSender;
use futures::future::BoxFuture;
use futures::{
pin_mut, AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt, FutureExt, Sink, SinkExt, StreamExt, TryStreamExt,
};
use governor::Quota;
use smart_default::SmartDefault;
use std::collections::{BTreeSet, HashSet};
use std::fmt::{Debug, Display};
use std::future::Future;
use std::pin::Pin;
use std::sync::atomic::{AtomicU32, Ordering};
use std::sync::Arc;
use std::task::{Context, Poll};
use std::time::{Duration, Instant};
use tracing::{debug, error, trace, warn};
use hopr_async_runtime::prelude::spawn;
use crate::errors::NetworkTypeError;
use crate::prelude::protocol::SessionMessageIter;
use crate::session::errors::SessionError;
use crate::session::frame::{segment, FrameId, FrameReassembler, Segment, SegmentId};
use crate::session::protocol::{FrameAcknowledgements, SegmentRequest, SessionMessage};
use crate::session::utils::{RetryResult, RetryToken};
use crate::utils::AsyncReadStreamer;
#[cfg(all(feature = "prometheus", not(test)))]
lazy_static::lazy_static! {
static ref METRIC_TIME_TO_ACK: hopr_metrics::MultiHistogram =
hopr_metrics::MultiHistogram::new(
"hopr_session_time_to_ack",
"Time in seconds until a complete frame gets acknowledged by the recipient",
vec![0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0],
&["session_id"]
).unwrap();
}
/// Represents individual Session protocol features that can be enabled.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum SessionFeature {
/// Enable requesting of incomplete frames by the recipient.
RequestIncompleteFrames,
/// Enable frame retransmission by the sender.
/// This requires `AcknowledgeFrames` to be enabled at the recipient.
RetransmitFrames,
/// Enable frame acknowledgement by the recipient.
AcknowledgeFrames,
/// Disables small frame buffering.
NoDelay,
}
impl SessionFeature {
/// Default features
///
/// These include:
/// - [`SessionFeature::AcknowledgeFrames`]
/// - ACK-based ([`SessionFeature::RetransmitFrames`]) and NACK-based ([`SessionFeature::RequestIncompleteFrames`]) retransmission
/// - Frame buffering (no [`SessionFeature::NoDelay`])
fn default_features() -> Vec<SessionFeature> {
vec![
SessionFeature::AcknowledgeFrames,
SessionFeature::RequestIncompleteFrames,
SessionFeature::RetransmitFrames,
]
}
}
/// Configuration of Session protocol.
#[derive(Debug, Clone, SmartDefault, validator::Validate)]
pub struct SessionConfig {
/// Maximum number of buffered segments.
///
/// The value should be large enough to accommodate segments for an at least
/// `frame_expiration_age` period, considering the expected maximum bandwidth.
///
/// Default is 50,000.
#[default = 50_000]
pub max_buffered_segments: usize,
/// Size of the buffer for acknowledged frame IDs.
///
/// The value should be large enough so that the buffer can accommodate segments
/// for an at least `frame_expiration_age` period, given the expected maximum bandwidth.
///
/// The minimum value is 1, default is 1024.
#[default = 1024]
#[validate(range(min = 1))]
pub acknowledged_frames_buffer: usize,
/// Specifies the maximum period a frame should be kept by the sender and
/// asked for retransmission by the recipient.
///
/// Default is 30 seconds.
#[default(Duration::from_secs(30))]
pub frame_expiration_age: Duration,
/// If a frame is incomplete (on the receiver), retransmission requests will be made
/// with exponential backoff starting at this initial retry timeout (RTO).
///
/// Requests will be sent until `frame_expiration_age` is reached.
///
/// NOTE: this value should be offset from `rto_base_sender`, so that the receiver's
/// retransmission requests are interleaved with the sender's retransmissions.
///
/// In *most* cases, you want to 0 < `rto_base_receiver` < `rto_base_sender` < `frame_expiration_age`.
///
/// Default is 1 second.
#[default(Duration::from_millis(1000))]
pub rto_base_receiver: Duration,
/// If a frame is unacknowledged (on the sender), entire frame retransmissions will be made
/// with exponential backoff starting at this initial retry timeout (RTO).
///
/// Frames will be retransmitted until `frame_expiration_age` is reached.
///
/// NOTE: this value should be offset from `rto_base_receiver`, so that the receiver's
/// retransmission requests are interleaved with the sender's retransmissions.
///
/// In *most* cases, you want to 0 < `rto_base_receiver` < `rto_base_sender` < `frame_expiration_age`.
///
/// Default is 1.5 seconds.
#[default(Duration::from_millis(1500))]
pub rto_base_sender: Duration,
/// Base for the exponential backoff on retries.
///
/// Default is 2.
#[default(2.0)]
#[validate(range(min = 1.0))]
pub backoff_base: f64,
/// Standard deviation of a Gaussian jitter applied to `rto_base_receiver` and
/// `rto_base_sender`. Must be between 0 and 0.25.
///
/// Default is 0.05
#[default(0.05)]
#[validate(range(min = 0.0, max = 0.25))]
pub rto_jitter: f64,
/// Set of [features](SessionFeature) that should be enabled on this Session.
///
/// Default is [`SessionFeature::default_features`].
#[default(_code = "HashSet::from_iter(SessionFeature::default_features())")]
pub enabled_features: HashSet<SessionFeature>,
}
/// Contains the cloneable state of the session bound to a [`SessionSocket`].
///
/// It implements the entire [`SessionMessage`] state machine and
/// performs the frame reassembly and sequencing.
/// The MTU size is specified by `C`.
///
/// The `SessionState` cannot be created directly, it must always be created via [`SessionSocket`] and
/// then retrieved via [`SessionSocket::state`].
#[derive(Debug, Clone)]
pub struct SessionState<const C: usize> {
session_id: String,
lookbehind: Arc<SkipMap<SegmentId, Segment>>,
to_acknowledge: Arc<ArrayQueue<FrameId>>,
incoming_frame_retries: Arc<DashMap<FrameId, RetryToken>>,
outgoing_frame_resends: Arc<DashMap<FrameId, RetryToken>>,
outgoing_frame_id: Arc<AtomicU32>,
frame_reassembler: Arc<FrameReassembler>,
cfg: SessionConfig,
segment_egress_send: UnboundedSender<SessionMessage<C>>,
}
fn maybe_fused_future<'a, F>(condition: bool, future: F) -> futures::future::Fuse<BoxFuture<'a, ()>>
where
F: Future<Output = ()> + Send + Sync + 'a,
{
if condition {
future.boxed()
} else {
futures::future::pending().boxed()
}
.fuse()
}
impl<const C: usize> SessionState<C> {
fn consume_segment(&mut self, segment: Segment) -> crate::errors::Result<()> {
let id = segment.id();
match self.frame_reassembler.push_segment(segment) {
Ok(_) => {
trace!(session_id = self.session_id, segment = %id, "RECEIVED: segment");
match self.incoming_frame_retries.entry(id.0) {
Entry::Occupied(e) => {
// Receiving a frame segment restarts the retry token for this frame
let rt = *e.get();
e.replace_entry(rt.replenish(Instant::now(), self.cfg.backoff_base));
}
Entry::Vacant(v) => {
// Create the retry token for this frame
v.insert(RetryToken::new(Instant::now(), self.cfg.backoff_base));
}
}
}
// The error here is intentionally not propagated
Err(e) => warn!(session_id = self.session_id, ?id, error = %e, "segment not pushed"),
}
Ok(())
}
fn retransmit_segments(&mut self, request: SegmentRequest<C>) -> crate::errors::Result<()> {
trace!(
session_id = self.session_id,
count_of_segments = request.len(),
"RECEIVED: request",
);
let mut count = 0;
request
.into_iter()
.filter_map(|segment_id| {
// No need to retry this frame ourselves, since the other side will request on its own
self.outgoing_frame_resends.remove(&segment_id.0);
let ret = self
.lookbehind
.get(&segment_id)
.map(|e| SessionMessage::<C>::Segment(e.value().clone()));
if ret.is_some() {
trace!(
session_id = self.session_id,
%segment_id,
"SENDING: retransmitted segment"
);
count += 1;
} else {
warn!(
session_id = self.session_id,
id = ?segment_id,
"segment not in lookbehind buffer anymore",
);
}
ret
})
.try_for_each(|msg| self.segment_egress_send.unbounded_send(msg))
.map_err(|e| SessionError::ProcessingError(e.to_string()))?;
trace!(session_id = self.session_id, count, "retransmitted requested segments");
Ok(())
}
fn acknowledged_frames(&mut self, acked: FrameAcknowledgements<C>) -> crate::errors::Result<()> {
trace!(
session_id = self.session_id,
count = acked.len(),
"RECEIVED: acknowledgement frames",
);
for frame_id in acked {
// Frame acknowledged, we won't need to resend it
if let Some((_, rt)) = self.outgoing_frame_resends.remove(&frame_id) {
let to_ack = rt.time_since_creation();
trace!(
session_id = self.session_id,
frame_id,
duration_in_ms = to_ack.as_millis(),
"frame acknowledgement duratin"
);
#[cfg(all(feature = "prometheus", not(test)))]
METRIC_TIME_TO_ACK.observe(&[self.session_id()], to_ack.as_secs_f64())
}
for seg in self.lookbehind.iter().filter(|s| frame_id == s.key().0) {
seg.remove();
}
}
Ok(())
}
/// Sends a request for missing segments in incomplete frames.
/// One [request](SessionMessage::Request) message is sent per incomplete frame. The message contains
/// the segment indices missing from that frame.
/// Recurring requests have an [`rto_base_receiver`](SessionConfig) timeout with backoff.
/// Returns the number of sent request messages.
async fn request_missing_segments(&mut self) -> crate::errors::Result<usize> {
let tracked_incomplete = self.frame_reassembler.incomplete_frames();
trace!(
session_id = self.session_id,
count = tracked_incomplete.len(),
"tracking incomplete frames",
);
// Filter the frames which we are allowed to retry now
let mut to_retry = Vec::with_capacity(tracked_incomplete.len());
let now = Instant::now();
for info in tracked_incomplete {
match self.incoming_frame_retries.entry(info.frame_id) {
Entry::Occupied(e) => {
// Check if we can retry this frame now
let rto_check = e.get().check(
now,
self.cfg.rto_base_receiver,
self.cfg.frame_expiration_age,
self.cfg.rto_jitter,
);
match rto_check {
RetryResult::RetryNow(next_rto) => {
// Retry this frame and plan ahead of the time of the next retry
trace!(
session_id = self.session_id,
frame_id = info.frame_id,
retransmission_number = next_rto.num_retry,
"performing frame retransmission",
);
e.replace_entry(next_rto);
to_retry.push(info);
}
RetryResult::Expired => {
// Frame is expired, so no more retries
debug!(
session_id = self.session_id,
frame_id = info.frame_id,
"frame is already expired and will be evicted"
);
e.remove();
}
RetryResult::Wait(d) => trace!(
session_id = self.session_id,
frame_id = info.frame_id,
timeout_in_ms = d.as_millis(),
next_retransmission_request_number = e.get().num_retry,
"frame needs to wait for next retransmission request",
),
}
}
Entry::Vacant(v) => {
// Happens when no segment of this frame has been received yet
debug!(
session_id = self.session_id,
frame_id = info.frame_id,
"frame does not have a retry token"
);
v.insert(RetryToken::new(now, self.cfg.backoff_base));
to_retry.push(info);
}
}
}
let mut sent = 0;
let to_retry = to_retry
.chunks(SegmentRequest::<C>::MAX_ENTRIES)
.map(|chunk| Ok(SessionMessage::<C>::Request(chunk.iter().cloned().collect())))
.inspect(|r| {
trace!(
session_id = self.session_id,
result = ?r,
"SENDING: retransmission request"
);
sent += 1;
})
.collect::<Vec<_>>();
self.segment_egress_send
.send_all(&mut futures::stream::iter(to_retry))
.await
.map_err(|e| SessionError::ProcessingError(e.to_string()))?;
trace!(
session_id = self.session_id,
count = sent,
"RETRANSMISSION BATCH COMPLETE: sent {sent} re-send requests",
);
Ok(sent)
}
/// Sends [acknowledgement](SessionMessage::Acknowledge) messages containing frames IDs
/// of all frames that were successfully processed.
/// If [`acknowledged_frames_buffer`](SessionConfig) was set to `0` during the construction,
/// this method will do nothing and return `0`.
/// Otherwise, it returns the number of acknowledged frames.
/// If `acknowledged_frames_buffer` is non-zero, the buffer behaves like a ring buffer,
/// which means if this method is not called sufficiently often, the oldest acknowledged
/// frame IDs will be discarded.
/// Single [message](SessionMessage::Acknowledge) can accommodate up to [`FrameAcknowledgements::MAX_ACK_FRAMES`] frame IDs, so
/// this method sends as many messages as needed.
async fn acknowledge_segments(&mut self) -> crate::errors::Result<usize> {
let mut len = 0;
let mut msgs = 0;
while !self.to_acknowledge.is_empty() {
let mut ack_frames = FrameAcknowledgements::<C>::default();
while !ack_frames.is_full() && !self.to_acknowledge.is_empty() {
if let Some(ack_id) = self.to_acknowledge.pop() {
ack_frames.push(ack_id);
len += 1;
}
}
trace!(
session_id = self.session_id,
count = ack_frames.len(),
"SENDING: acknowledgements of frames",
);
self.segment_egress_send
.feed(SessionMessage::Acknowledge(ack_frames))
.await
.map_err(|e| SessionError::ProcessingError(e.to_string()))?;
msgs += 1;
}
self.segment_egress_send
.flush()
.await
.map_err(|e| SessionError::ProcessingError(e.to_string()))?;
trace!(
session_id = self.session_id,
count = len,
messages = msgs,
"ACK BATCH COMPLETE: sent acks in messages",
);
Ok(len)
}
/// Performs retransmission of entire unacknowledged frames as sender.
/// If [`acknowledged_frames_buffer`](SessionConfig) was set to `0` during the construction,
/// this method will do nothing and return `0`.
/// Otherwise, it returns the number of retransmitted frames.
/// Recurring retransmissions have an [`rto_base_sender`](SessionConfig) timeout with backoff.
async fn retransmit_unacknowledged_frames(&mut self) -> crate::errors::Result<usize> {
if self.cfg.acknowledged_frames_buffer == 0 {
return Ok(0);
}
let now = Instant::now();
// Retain only non-expired frames, collect all of which are due for re-send
let mut frames_to_resend = BTreeSet::new();
self.outgoing_frame_resends.retain(|frame_id, retry_log| {
let check_res = retry_log.check(
now,
self.cfg.rto_base_sender,
self.cfg.frame_expiration_age,
self.cfg.rto_jitter,
);
match check_res {
RetryResult::Wait(d) => {
trace!(
session_id = self.session_id,
frame_id,
wait_timeout_in_ms = d.as_millis(),
"frame will retransmit"
);
true
}
RetryResult::RetryNow(next_retry) => {
// Single segment frame scenario
frames_to_resend.insert(*frame_id);
*retry_log = next_retry;
debug!(session_id = self.session_id, frame_id, "frame will self-resend now");
true
}
RetryResult::Expired => {
debug!(session_id = self.session_id, frame_id, "frame expired");
false
}
}
});
trace!(
session_id = self.session_id,
count = frames_to_resend.len(),
"frames will auto-resend",
);
// Find all segments of the frames to resend in the lookbehind buffer,
// skip those that are not in the lookbehind buffer anymore
let mut count = 0;
let frames_to_resend = frames_to_resend
.into_iter()
.flat_map(|f| self.lookbehind.iter().filter(move |e| e.key().0 == f))
.inspect(|e| {
trace!(
session_id = self.session_id,
key = ?e.key(),
"SENDING: auto-retransmitted"
);
count += 1
})
.map(|e| Ok(SessionMessage::<C>::Segment(e.value().clone())))
.collect::<Vec<_>>();
self.segment_egress_send
.send_all(&mut futures::stream::iter(frames_to_resend))
.await
.map_err(|e| SessionError::ProcessingError(e.to_string()))?;
trace!(
session_id = self.session_id,
count,
"AUTO-RETRANSMIT BATCH COMPLETE: re-sent segments",
);
Ok(count)
}
/// How much space for payload there is in a single packet.
const PAYLOAD_CAPACITY: usize = C - SessionMessage::<C>::SEGMENT_OVERHEAD;
/// Maximum size of a frame, which is determined by the maximum number of possible segments.
const MAX_WRITE_SIZE: usize = SessionMessage::<C>::MAX_SEGMENTS_PER_FRAME * Self::PAYLOAD_CAPACITY;
/// Segments the `data` and sends them as (possibly multiple) [`SessionMessage::Segment`].
/// Therefore, this method sends as many messages as needed after the data was segmented.
/// Each segment is inserted into the lookbehind ring buffer for possible retransmissions.
///
/// The size of the lookbehind ring buffer is given by the [`max_buffered_segments`](SessionConfig)
/// given during the construction. It needs to accommodate as many segments as
/// is the expected underlying transport bandwidth (segment/sec) to guarantee the retransmission
/// can still happen within some time window.
pub async fn send_frame_data(&mut self, data: &[u8]) -> crate::errors::Result<()> {
if !(1..=Self::MAX_WRITE_SIZE).contains(&data.len()) {
return Err(SessionError::IncorrectMessageLength.into());
}
let frame_id = self.outgoing_frame_id.fetch_add(1, Ordering::SeqCst);
let segments = segment(data, Self::PAYLOAD_CAPACITY, frame_id)?;
let count = segments.len();
for segment in segments {
let msg = SessionMessage::<C>::Segment(segment.clone());
trace!(session_id = self.session_id, id = ?segment.id(), "SENDING: segment");
self.segment_egress_send
.feed(msg)
.await
.map_err(|e| SessionError::ProcessingError(e.to_string()))?;
// This is the only place where we insert into the lookbehind buffer
self.lookbehind.insert((&segment).into(), segment.clone());
while self.lookbehind.len() > self.cfg.max_buffered_segments {
self.lookbehind.pop_front();
}
}
self.segment_egress_send
.flush()
.await
.map_err(|e| SessionError::ProcessingError(e.to_string()))?;
self.outgoing_frame_resends
.insert(frame_id, RetryToken::new(Instant::now(), self.cfg.backoff_base));
trace!(
session_id = self.session_id,
frame_id,
count,
"FRAME SEND COMPLETE: sent segments",
);
Ok(())
}
/// Convenience method to advance the state by calling all three methods in order:
/// - [`SessionState::acknowledge_segments`]
/// - [`SessionState::request_missing_segments`]
/// - [`SessionState::retransmit_unacknowledged_frames`]
///
async fn state_loop(&mut self) -> crate::errors::Result<()> {
// Rate limiter for reassembler evictions:
// tries to evict 10 times before a frame expires
let eviction_limiter =
governor::RateLimiter::direct(Quota::with_period(self.cfg.frame_expiration_age / 10).ok_or(
NetworkTypeError::Other("rate limiter frame_expiration_age invalid".into()),
)?);
// Rate limiter for acknowledgements:
// sends acknowledgements 4 times more often
// than the other side can retransmit them, or we ask for retransmissions.
let ack_rate_limiter = governor::RateLimiter::direct(
Quota::with_period(self.cfg.rto_base_sender.min(self.cfg.rto_base_receiver) / 4)
.ok_or(NetworkTypeError::Other("rate limiter ack rate invalid".into()))?,
);
// Rate limiter for retransmissions by the sender
let sender_retransmit = governor::RateLimiter::direct(
Quota::with_period(self.cfg.rto_base_sender)
.ok_or(NetworkTypeError::Other("rate limiter rto sender invalid".into()))?,
);
// Rate limiter for retransmissions by the receiver
let receiver_retransmit = governor::RateLimiter::direct(
Quota::with_period(self.cfg.rto_base_receiver)
.ok_or(NetworkTypeError::Other("rate limiter rto receiver invalid".into()))?,
);
loop {
let mut evict_fut = eviction_limiter.until_ready().boxed().fuse();
let mut ack_fut = maybe_fused_future(
self.cfg.enabled_features.contains(&SessionFeature::AcknowledgeFrames),
ack_rate_limiter.until_ready(),
);
let mut r_snd_fut = maybe_fused_future(
self.cfg.enabled_features.contains(&SessionFeature::RetransmitFrames),
sender_retransmit.until_ready(),
);
let mut r_rcv_fut = maybe_fused_future(
self.cfg
.enabled_features
.contains(&SessionFeature::RequestIncompleteFrames),
receiver_retransmit.until_ready(),
);
let mut is_done = maybe_fused_future(self.segment_egress_send.is_closed(), futures::future::ready(()));
// Futures in `select_biased!` are ordered from the least often happening first.
// This means that the least happening events will not get starved by those
// that happen very often.
if let Err(e) = futures::select_biased! {
_ = is_done => {
Err(NetworkTypeError::Other("session writer has been closed".into()))
},
_ = r_rcv_fut => {
self.request_missing_segments().await
},
_ = r_snd_fut => {
self.retransmit_unacknowledged_frames().await
},
_ = ack_fut => {
self.acknowledge_segments().await
},
_ = evict_fut => {
self.frame_reassembler.evict().map_err(NetworkTypeError::from)
},
} {
debug!(session_id = self.session_id, "session is closing: {e}");
break;
}
}
Ok(())
}
/// Returns the ID of this session.
pub fn session_id(&self) -> &str {
&self.session_id
}
}
// Sink for data coming from downstream
impl<const C: usize> Sink<SessionMessage<C>> for SessionState<C> {
type Error = NetworkTypeError;
fn poll_ready(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
fn start_send(mut self: Pin<&mut Self>, item: SessionMessage<C>) -> Result<(), Self::Error> {
match item {
SessionMessage::Segment(s) => self.consume_segment(s),
SessionMessage::Request(r) => self.retransmit_segments(r),
SessionMessage::Acknowledge(f) => self.acknowledged_frames(f),
}
}
fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
Poll::Ready(Ok(()))
}
fn poll_close(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.frame_reassembler.close();
Poll::Ready(Ok(()))
}
}
#[cfg_attr(doc, aquamarine::aquamarine)]
/// Represents a socket for a session between two nodes bound by the
/// underlying [network transport](AsyncWrite) and the maximum transmission unit (MTU) of `C`.
///
/// It also implements [`AsyncRead`] and [`AsyncWrite`] so that it can
/// be used on top of the usual transport stack.
///
/// Based on the [configuration](SessionConfig), the `SessionSocket` can support:
/// - frame segmentation and reassembly
/// - segment and frame retransmission and reliability
///
/// See the module docs for details on retransmission.
///
/// # Retransmission driven by the Receiver
///```mermaid
/// sequenceDiagram
/// Note over Sender,Receiver: Frame 1
/// rect rgb(191, 223, 255)
/// Note left of Sender: Frame 1 in buffer
/// Sender->>Receiver: Segment 1/3 of Frame 1
/// Sender->>Receiver: Segment 2/3 of Frame 1
/// Sender--xReceiver: Segment 3/3 of Frame 1
/// Note right of Receiver: RTO_BASE_RECEIVER elapsed
/// Receiver->>Sender: Request Segment 3 of Frame 1
/// Sender->>Receiver: Segment 3/3 of Frame 1
/// Receiver->>Sender: Acknowledge Frame 1
/// Note left of Sender: Frame 1 dropped from buffer
/// end
/// Note over Sender,Receiver: Frame 1 delivered
///```
///
/// # Retransmission driven by the Sender
/// ```mermaid
/// sequenceDiagram
/// Note over Sender,Receiver: Frame 1
/// rect rgb(191, 223, 255)
/// Note left of Sender: Frame 1 in buffer
/// Sender->>Receiver: Segment 1/3 of Frame 1
/// Sender->>Receiver: Segment 2/3 of Frame 1
/// Sender--xReceiver: Segment 3/3 of Frame 1
/// Note right of Receiver: RTO_BASE_RECEIVER elapsed
/// Receiver--xSender: Request Segment 3 of Frame 1
/// Note left of Sender: RTO_BASE_SENDER elapsed
/// Sender->>Receiver: Segment 1/3 of Frame 1
/// Sender->>Receiver: Segment 2/3 of Frame 1
/// Sender->>Receiver: Segment 3/3 of Frame 1
/// Receiver->>Sender: Acknowledge Frame 1
/// Note left of Sender: Frame 1 dropped from buffer
/// end
/// Note over Sender,Receiver: Frame 1 delivered
/// ```
///
/// # Sender-Receiver retransmission handover
///
/// ```mermaid
/// sequenceDiagram
/// Note over Sender,Receiver: Frame 1
/// rect rgb(191, 223, 255)
/// Note left of Sender: Frame 1 in buffer
/// Sender->>Receiver: Segment 1/3 of Frame 1
/// Sender--xReceiver: Segment 2/3 of Frame 1
/// Sender--xReceiver: Segment 3/3 of Frame 1
/// Note right of Receiver: RTO_BASE_RECEIVER elapsed
/// Receiver->>Sender: Request Segments 2,3 of Frame 1
/// Note left of Sender: RTO_BASE_SENDER cancelled
/// Sender->>Receiver: Segment 2/3 of Frame 1
/// Sender--xReceiver: Segment 3/3 of Frame 1
/// Note right of Receiver: RTO_BASE_RECEIVER elapsed
/// Receiver--xSender: Request Segments 3 of Frame 1
/// Note right of Receiver: RTO_BASE_RECEIVER elapsed
/// Receiver->>Sender: Request Segments 3 of Frame 1
/// Sender->>Receiver: Segment 3/3 of Frame 1
/// Receiver->>Sender: Acknowledge Frame 1
/// Note left of Sender: Frame 1 dropped from buffer
/// end
/// Note over Sender,Receiver: Frame 1 delivered
/// ```
///
/// # Retransmission failure
///
/// ```mermaid
/// sequenceDiagram
/// Note over Sender,Receiver: Frame 1
/// rect rgb(191, 223, 255)
/// Note left of Sender: Frame 1 in buffer
/// Sender->>Receiver: Segment 1/3 of Frame 1
/// Sender->>Receiver: Segment 2/3 of Frame 1
/// Sender--xReceiver: Segment 3/3 of Frame 1
/// Note right of Receiver: RTO_BASE_RECEIVER elapsed
/// Receiver--xSender: Request Segment 3 of Frame 1
/// Note left of Sender: RTO_BASE_SENDER elapsed
/// Sender--xReceiver: Segment 1/3 of Frame 1
/// Sender--xReceiver: Segment 2/3 of Frame 1
/// Sender--xReceiver: Segment 3/3 of Frame 1
/// Note left of Sender: FRAME_MAX_AGE elapsed<br/>Frame 1 dropped from buffer
/// Note right of Receiver: FRAME_MAX_AGE elapsed<br/>Frame 1 dropped from buffer
/// end
/// Note over Sender,Receiver: Frame 1 never delivered
/// ```
pub struct SessionSocket<const C: usize> {
state: SessionState<C>,
frame_egress: Box<dyn AsyncRead + Send + Unpin>,
}
impl<const C: usize> SessionSocket<C> {
/// Payload capacity is MTU minus the sizes of the Session protocol headers.
pub const PAYLOAD_CAPACITY: usize = SessionState::<C>::PAYLOAD_CAPACITY;
/// Maximum number of bytes that can be written in a single `poll_write` to the Session.
pub const MAX_WRITE_SIZE: usize = SessionState::<C>::MAX_WRITE_SIZE;
/// Create a new socket over the given underlying `transport` that binds the communicating parties.
/// A human-readable session `id` also must be supplied.
pub fn new<T, I>(id: I, transport: T, cfg: SessionConfig) -> Self
where
T: AsyncWrite + AsyncRead + Send + 'static,
I: Display + Send + 'static,
{
assert!(
C >= SessionMessage::<C>::minimum_message_size(),
"given MTU is too small"
);
let (reassembler, egress) = FrameReassembler::new(cfg.frame_expiration_age);
let to_acknowledge = Arc::new(ArrayQueue::new(cfg.acknowledged_frames_buffer.max(1)));
let incoming_frame_retries = Arc::new(DashMap::new());
let incoming_frame_retries_clone = incoming_frame_retries.clone();
let id_clone = id.to_string().clone();
let to_acknowledge_clone = to_acknowledge.clone();
let ack_enabled = cfg.enabled_features.contains(&SessionFeature::AcknowledgeFrames);
let frame_egress = Box::new(
egress
.filter_map(move |maybe_frame| {
match maybe_frame {
Ok(frame) => {
trace!(session_id = id_clone, frame_id = frame.frame_id, "frame completed");
// The frame has been completed, so remove its retry record
incoming_frame_retries_clone.remove(&frame.frame_id);
if ack_enabled {
// Acts as a ring buffer, so if the buffer is full, any unsent acknowledgements
// will be discarded.
to_acknowledge_clone.force_push(frame.frame_id);
}
futures::future::ready(Some(Ok(frame)))
}
Err(SessionError::FrameDiscarded(fid)) | Err(SessionError::IncompleteFrame(fid)) => {
// Remove the retry token because the frame has been discarded
incoming_frame_retries_clone.remove(&fid);
warn!(session_id = id_clone, frame_id = fid, "frame skipped");
futures::future::ready(None) // Skip discarded frames
}
Err(e) => {
error!(session_id = id_clone, "error on frame reassembly: {e}");
futures::future::ready(Some(Err(std::io::Error::other(e))))
}
}
})
.into_async_read(),
);
let (segment_egress_send, segment_egress_recv) = futures::channel::mpsc::unbounded();
let (downstream_read, downstream_write) = transport.split();
// As `segment_egress_recv` terminates `forward` will flush the downstream buffer
let downstream_write = futures::io::BufWriter::with_capacity(
if !cfg.enabled_features.contains(&SessionFeature::NoDelay) {
C
} else {
0
},
downstream_write,
);
let state = SessionState {
lookbehind: Arc::new(SkipMap::new()),
outgoing_frame_id: Arc::new(AtomicU32::new(1)),
frame_reassembler: Arc::new(reassembler),
outgoing_frame_resends: Arc::new(DashMap::new()),
session_id: id.to_string(),
to_acknowledge,
incoming_frame_retries,
segment_egress_send,
cfg,
};
// Segment egress to downstream
spawn(async move {
if let Err(e) = segment_egress_recv
.map(|m: SessionMessage<C>| Ok(m.into_encoded()))
.forward(downstream_write.into_sink())
.await
{
error!(session_id = %id, error = %e, "FINISHED: forwarding to downstream terminated with error")
} else {
debug!(session_id = %id, "FINISHED: forwarding to downstream done");
}
});
// Segment ingress from downstream
spawn(
AsyncReadStreamer::<C, _>(downstream_read)
.map_err(|e| NetworkTypeError::SessionProtocolError(SessionError::ProcessingError(e.to_string())))
.and_then(|m| futures::future::ok(futures::stream::iter(SessionMessageIter::from(m.into_vec()))))
.try_flatten()
.forward(state.clone()),
);
// Advance the state until the socket is closed
let mut state_clone = state.clone();
spawn(async move {
let loop_done = state_clone.state_loop().await;
debug!(
session_id = state_clone.session_id,
"FINISHED: state loop {loop_done:?}"
);
});
Self { state, frame_egress }
}
/// Gets the [state](SessionState) of this socket.
pub fn state(&self) -> &SessionState<C> {
&self.state
}
/// Gets the mutable [state](SessionState) of this socket.
pub fn state_mut(&mut self) -> &mut SessionState<C> {
&mut self.state
}
}
impl<const C: usize> AsyncWrite for SessionSocket<C> {
fn poll_write(mut self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<std::io::Result<usize>> {
let len_to_write = Self::MAX_WRITE_SIZE.min(buf.len());
tracing::trace!(
session_id = self.state.session_id(),
number_of_bytes = len_to_write,
"polling write of bytes on socket reader inside session",
);
// Zero-length write will always pass
if len_to_write == 0 {
return Poll::Ready(Ok(0));
}
let mut socket_future = self.state.send_frame_data(&buf[..len_to_write]).boxed();
match Pin::new(&mut socket_future).poll(cx) {
Poll::Ready(Ok(())) => Poll::Ready(Ok(len_to_write)),
Poll::Ready(Err(e)) => Poll::Ready(Err(std::io::Error::other(e))),
Poll::Pending => Poll::Pending,
}
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<std::io::Result<()>> {
tracing::trace!(
session_id = self.state.session_id(),
"polling flush on socket reader inside session"
);
let inner = &mut self.state.segment_egress_send;
pin_mut!(inner);
inner.poll_flush(cx).map_err(std::io::Error::other)
}
fn poll_close(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<std::io::Result<()>> {
tracing::trace!(
session_id = self.state.session_id(),
"polling close on socket reader inside session"
);
// We call close_channel instead of poll_close to also end the receiver
self.state.segment_egress_send.close_channel();
Poll::Ready(Ok(()))
}
}
impl<const C: usize> AsyncRead for SessionSocket<C> {
fn poll_read(mut self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &mut [u8]) -> Poll<std::io::Result<usize>> {
tracing::trace!(
session_id = self.state.session_id(),
"polling read on socket reader inside session"
);
let inner = &mut self.frame_egress;
pin_mut!(inner);
inner.poll_read(cx, buf)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::utils::DuplexIO;
use futures::future::Either;
use futures::io::{AsyncReadExt, AsyncWriteExt};
use futures::pin_mut;
use hex_literal::hex;
use parameterized::parameterized;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use std::iter::Extend;
use test_log::test;
use crate::session::utils::{FaultyNetwork, FaultyNetworkConfig, NetworkStats};
const MTU: usize = 466; // MTU used by HOPR
// Using static RNG seed to make tests reproducible between different runs
const RNG_SEED: [u8; 32] = hex!("d8a471f1c20490a3442b96fdde9d1807428096e1601b0cef0eea7e6d44a24c01");
fn setup_alice_bob(
cfg: SessionConfig,
network_cfg: FaultyNetworkConfig,
alice_stats: Option<NetworkStats>,
bob_stats: Option<NetworkStats>,
) -> (SessionSocket<MTU>, SessionSocket<MTU>) {
let (alice_stats, bob_stats) = alice_stats
.zip(bob_stats)
.map(|(alice, bob)| {
(
NetworkStats {
packets_sent: bob.packets_sent,
bytes_sent: bob.bytes_sent,
packets_received: alice.packets_received,
bytes_received: alice.bytes_received,
},
NetworkStats {
packets_sent: alice.packets_sent,
bytes_sent: alice.bytes_sent,
packets_received: bob.packets_received,
bytes_received: bob.bytes_received,
},
)
})
.unzip();
let (alice_reader, alice_writer) = FaultyNetwork::<MTU>::new(network_cfg.clone(), alice_stats).split();
let (bob_reader, bob_writer) = FaultyNetwork::<MTU>::new(network_cfg.clone(), bob_stats).split();
let alice_to_bob = SessionSocket::new("alice", DuplexIO(alice_reader, bob_writer), cfg.clone());
let bob_to_alice = SessionSocket::new("bob", DuplexIO(bob_reader, alice_writer), cfg.clone());
(alice_to_bob, bob_to_alice)
}
async fn send_and_recv<S>(
num_frames: usize,
frame_size: usize,
alice: S,
bob: S,
timeout: Duration,
alice_to_bob_only: bool,
randomized_frame_sizes: bool,
) where
S: AsyncRead + AsyncWrite + Unpin + Send + 'static,
{
#[derive(PartialEq, Eq)]
enum Direction {
Send,
Recv,
Both,
}
let frame_sizes = if randomized_frame_sizes {
let norm_dist = rand_distr::Normal::new(frame_size as f64 * 0.75, frame_size as f64 / 4.0).unwrap();
StdRng::from_seed(RNG_SEED)
.sample_iter(norm_dist)
.map(|s| (s as usize).max(10).min(2 * frame_size))
.take(num_frames)
.collect::<Vec<_>>()
} else {
std::iter::repeat(frame_size).take(num_frames).collect::<Vec<_>>()
};
let socket_worker = |mut socket: S, d: Direction| {
let frame_sizes = frame_sizes.clone();
let frame_sizes_total = frame_sizes.iter().sum();
async move {
let mut received = Vec::with_capacity(frame_sizes_total);
let mut sent = Vec::with_capacity(frame_sizes_total);
if d == Direction::Send || d == Direction::Both {
for frame_size in &frame_sizes {
let mut write = vec![0u8; *frame_size];
hopr_crypto_random::random_fill(&mut write);
socket.write(&write).await?;
sent.extend(write);
}
}
if d == Direction::Recv || d == Direction::Both {
// Either read everything or timeout trying
while received.len() < frame_sizes_total {
let mut buffer = [0u8; 2048];
let read = socket.read(&mut buffer).await?;
received.extend(buffer.into_iter().take(read));
}
}
// TODO: fix this so it works properly
// We cannot close immediately as some ack/resends might be ongoing
//socket.close().await.unwrap();
Ok::<_, std::io::Error>((sent, received))
}
};
let alice_worker = async_std::task::spawn(socket_worker(
alice,
if alice_to_bob_only {
Direction::Send
} else {
Direction::Both
},
));
let bob_worker = async_std::task::spawn(socket_worker(
bob,
if alice_to_bob_only {
Direction::Recv
} else {
Direction::Both
},
));
let send_recv = futures::future::join(alice_worker, bob_worker);
let timeout = async_std::task::sleep(timeout);
pin_mut!(send_recv);
pin_mut!(timeout);
match futures::future::select(send_recv, timeout).await {
Either::Left(((Ok((alice_sent, alice_recv)), Ok((bob_sent, bob_recv))), _)) => {
assert_eq!(
hex::encode(alice_sent),
hex::encode(bob_recv),
"alice sent must be equal to bob received"
);
assert_eq!(
hex::encode(bob_sent),
hex::encode(alice_recv),
"bob sent must be equal to alice received",
);
}
Either::Left(((Err(e), _), _)) => panic!("alice send recv error: {e}"),
Either::Left(((_, Err(e)), _)) => panic!("bob send recv error: {e}"),
Either::Right(_) => panic!("timeout"),
}
}
#[parameterized(num_frames = {10, 100, 1000}, frame_size = {1500, 1500, 1500})]
#[parameterized_macro(async_std::test)]
async fn reliable_send_recv_with_no_acks(num_frames: usize, frame_size: usize) {
let cfg = SessionConfig {
enabled_features: HashSet::new(),
..Default::default()
};
let (alice_to_bob, bob_to_alice) = setup_alice_bob(cfg, Default::default(), None, None);
send_and_recv(
num_frames,
frame_size,
alice_to_bob,
bob_to_alice,
Duration::from_secs(10),
false,
false,
)
.await;
}
#[parameterized(num_frames = {10, 100, 1000}, frame_size = {1500, 1500, 1500})]
#[parameterized_macro(async_std::test)]
async fn reliable_send_recv_with_with_acks(num_frames: usize, frame_size: usize) {
let cfg = SessionConfig { ..Default::default() };
let (alice_to_bob, bob_to_alice) = setup_alice_bob(cfg, Default::default(), None, None);
send_and_recv(
num_frames,
frame_size,
alice_to_bob,
bob_to_alice,
Duration::from_secs(10),
false,
false,
)
.await;
}
#[parameterized(num_frames = {10, 100, 1000}, frame_size = {1500, 1500, 1500})]
#[parameterized_macro(async_std::test)]
async fn unreliable_send_recv(num_frames: usize, frame_size: usize) {
let cfg = SessionConfig {
rto_base_receiver: Duration::from_millis(10),
rto_base_sender: Duration::from_millis(500),
frame_expiration_age: Duration::from_secs(30),
backoff_base: 1.001,
..Default::default()
};
let net_cfg = FaultyNetworkConfig {
fault_prob: 0.33,
..Default::default()
};
let (alice_to_bob, bob_to_alice) = setup_alice_bob(cfg, net_cfg, None, None);
send_and_recv(
num_frames,
frame_size,
alice_to_bob,
bob_to_alice,
Duration::from_secs(30),
false,
false,
)
.await;
}
#[parameterized(num_frames = {10, 100, 1000}, frame_size = {1500, 1500, 1500})]
#[parameterized_macro(async_std::test)]
async fn unreliable_send_recv_with_mixing(num_frames: usize, frame_size: usize) {
let cfg = SessionConfig {
rto_base_receiver: Duration::from_millis(10),
rto_base_sender: Duration::from_millis(500),
frame_expiration_age: Duration::from_secs(30),
backoff_base: 1.001,
..Default::default()
};
let net_cfg = FaultyNetworkConfig {
fault_prob: 0.33,
mixing_factor: 2,
..Default::default()
};
let (alice_to_bob, bob_to_alice) = setup_alice_bob(cfg, net_cfg, None, None);
send_and_recv(
num_frames,
frame_size,
alice_to_bob,
bob_to_alice,
Duration::from_secs(30),
false,
false,
)
.await;
}
#[parameterized(num_frames = {10, 100, 1000}, frame_size = {1500, 1500, 1500})]
#[parameterized_macro(async_std::test)]
async fn almost_reliable_send_recv_with_mixing(num_frames: usize, frame_size: usize) {
let cfg = SessionConfig {
rto_base_sender: Duration::from_millis(500),
rto_base_receiver: Duration::from_millis(10),
frame_expiration_age: Duration::from_secs(30),
backoff_base: 1.001,
..Default::default()
};
let net_cfg = FaultyNetworkConfig {
fault_prob: 0.1,
mixing_factor: 2,
..Default::default()
};
let (alice_to_bob, bob_to_alice) = setup_alice_bob(cfg, net_cfg, None, None);
send_and_recv(
num_frames,
frame_size,
alice_to_bob,
bob_to_alice,
Duration::from_secs(30),
false,
false,
)
.await;
}
#[parameterized(num_frames = {10, 100, 1000}, frame_size = {1500, 1500, 1500})]
#[parameterized_macro(async_std::test)]
async fn reliable_send_recv_with_mixing(num_frames: usize, frame_size: usize) {
let cfg = SessionConfig {
rto_base_sender: Duration::from_millis(500),
rto_base_receiver: Duration::from_millis(10),
frame_expiration_age: Duration::from_secs(30),
backoff_base: 1.001,
..Default::default()
};
let net_cfg = FaultyNetworkConfig {
mixing_factor: 2,
..Default::default()
};
let (alice_to_bob, bob_to_alice) = setup_alice_bob(cfg, net_cfg, None, None);
send_and_recv(
num_frames,
frame_size,
alice_to_bob,
bob_to_alice,
Duration::from_secs(30),
false,
false,
)
.await;
}
#[test(async_std::test)]
async fn small_frames_should_be_sent_as_single_transport_msgs_with_buffering_disabled() {
const NUM_FRAMES: usize = 10;
const FRAME_SIZE: usize = 64;
let cfg = SessionConfig {
enabled_features: HashSet::from_iter([SessionFeature::NoDelay]),
..Default::default()
};
let alice_stats = NetworkStats::default();
let bob_stats = NetworkStats::default();
let (alice_to_bob, bob_to_alice) = setup_alice_bob(
cfg,
FaultyNetworkConfig::default(),
alice_stats.clone().into(),
bob_stats.clone().into(),
);
send_and_recv(
NUM_FRAMES,
FRAME_SIZE,
alice_to_bob,
bob_to_alice,
Duration::from_secs(30),
true,
false,
)
.await;
assert_eq!(bob_stats.packets_received.load(Ordering::Relaxed), NUM_FRAMES);
assert_eq!(alice_stats.packets_sent.load(Ordering::Relaxed), NUM_FRAMES);
assert_eq!(
alice_stats.bytes_sent.load(Ordering::Relaxed),
NUM_FRAMES * (FRAME_SIZE + SessionMessage::<MTU>::SEGMENT_OVERHEAD)
);
assert_eq!(
bob_stats.bytes_received.load(Ordering::Relaxed),
NUM_FRAMES * (FRAME_SIZE + SessionMessage::<MTU>::SEGMENT_OVERHEAD)
);
}
#[test(async_std::test)]
async fn small_frames_should_be_sent_batched_in_transport_msgs_with_buffering_enabled() {
const NUM_FRAMES: usize = 10;
const FRAME_SIZE: usize = 64;
let cfg = SessionConfig {
enabled_features: HashSet::new(),
..Default::default()
};
let alice_stats = NetworkStats::default();
let bob_stats = NetworkStats::default();
let (alice_to_bob, bob_to_alice) = setup_alice_bob(
cfg,
FaultyNetworkConfig::default(),
alice_stats.clone().into(),
bob_stats.clone().into(),
);
send_and_recv(
NUM_FRAMES,
FRAME_SIZE,
alice_to_bob,
bob_to_alice,
Duration::from_secs(30),
true,
false,
)
.await;
assert!(bob_stats.packets_received.load(Ordering::Relaxed) < NUM_FRAMES);
assert!(alice_stats.packets_sent.load(Ordering::Relaxed) < NUM_FRAMES);
assert_eq!(
alice_stats.bytes_sent.load(Ordering::Relaxed),
NUM_FRAMES * (FRAME_SIZE + SessionMessage::<MTU>::SEGMENT_OVERHEAD)
);
assert_eq!(
bob_stats.bytes_received.load(Ordering::Relaxed),
NUM_FRAMES * (FRAME_SIZE + SessionMessage::<MTU>::SEGMENT_OVERHEAD)
);
}
#[test(async_std::test)]
async fn receiving_on_disconnected_network_should_timeout() {
let cfg = SessionConfig {
rto_base_sender: Duration::from_millis(250),
rto_base_receiver: Duration::from_millis(300),
frame_expiration_age: Duration::from_secs(2),
..Default::default()
};
let net_cfg = FaultyNetworkConfig {
fault_prob: 1.0, // throws away 100% of packets
mixing_factor: 0,
..Default::default()
};
let (mut alice_to_bob, mut bob_to_alice) = setup_alice_bob(cfg, net_cfg, None, None);
let data = b"will not be delivered!";
alice_to_bob.write(data.as_ref()).await.unwrap();
let mut out = vec![0u8; data.len()];
let f1 = bob_to_alice.read_exact(&mut out);
let f2 = async_std::task::sleep(Duration::from_secs(3));
pin_mut!(f1);
pin_mut!(f2);
match futures::future::select(f1, f2).await {
Either::Left(_) => panic!("should timeout: {:?}", out),
Either::Right(_) => {}
}
}
#[test(async_std::test)]
async fn single_frame_resend_should_be_resent_on_unreliable_network() {
let cfg = SessionConfig {
rto_base_sender: Duration::from_millis(250),
rto_base_receiver: Duration::from_millis(300),
frame_expiration_age: Duration::from_secs(10),
..Default::default()
};
let net_cfg = FaultyNetworkConfig {
fault_prob: 0.5, // throws away 50% of packets
mixing_factor: 0,
..Default::default()
};
let (mut alice_to_bob, mut bob_to_alice) = setup_alice_bob(cfg, net_cfg, None, None);
let data = b"will be re-delivered!";
alice_to_bob.write(data.as_ref()).await.unwrap();
let mut out = vec![0u8; data.len()];
let f1 = bob_to_alice.read_exact(&mut out);
let f2 = async_std::task::sleep(Duration::from_secs(5));
pin_mut!(f1);
pin_mut!(f2);
match futures::future::select(f1, f2).await {
Either::Left(_) => {}
Either::Right(_) => panic!("timeout"),
}
}
}